The Curious Case of Stacking Boosted Relational Dependency Networks
Published in ICBINB Workshop at NeurIPS, 2020
S. Yan, D. S. Dhami, S. Natarajan. Proceedings on I Cant Believe Its Not Better! at NeurIPS Workshops, PMLR 2020.
Abstract
Reducing bias while learning and inference is an important requirement to achieve generalizable and better performing models. The method of stacking took the first step towards creating such models by reducing inference bias but the question of combining stacking with a model that reduces learning bias is still largely unanswered. In statistical relational learning, ensemble models of relational trees such as boosted relational dependency networks (RDN-Boost) are shown to reduce the learning bias. We combine RDN-Boost and stacking methods with the aim of reducing both learning and inference bias subsequently resulting in better overall performance. However, our evaluation on three relational data sets shows no significant performance improvement over the baseline models.